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We calculated highly excited states of the HFCO molecule, comparing results from two methods. In the first
method, Van Vleck perturbation theory is used to transform away all off-diagonal couplings except those
between nearly degenerate states. This perturbative transformation leads to a matrix representation where
eigenvalues are obtained with relatively small matrices. In the second method, variational eigenvalues are
obtained by combining the Jacobi-Wilson approach with the block-Davidson scheme. The key ingredient
here is a prediagonalized-perturbative scheme applied to a subspace of a curvilinear normal-mode basis set.
Comparisons of the two methods provide a critical test of the less time-consuming perturbation theory. Two
different coordinate sets are used to test the sensitivity of the results to coordinate choice. Perturbation theory
also requires a polynomial fit to the potential. The implications of this restriction are investigated.

I. Introduction

High-resolution spectroscopy provides fully resolved spectra
of highly excited systems such as H2CO, HFCO,1-3 DFCO,4,5

CF3H,6-11 CH3OH,12 or C6H6
13-15 to cite a few examples.

However, such accurate data cannot be fully understood using
basic models. Consequently, quantum simulations are required
to help analyze these accurate spectroscopic data. For this
reason, considerable research has been carried out over the years
to develop both better ab initio quantum methods for calculating
a potential energy surface (PES) and more efficient numerical
methods for solving the rovibrational Schro¨dinger equation. The
present study focuses on the latter. Prominent among these
studies are several pioneering studies of the Light group,16-22

to which this volume is dedicated.
A crucial step in a variational calculation is the choice of

coordinates that describe the atomic motion. The rectilinear
normal modes constitute the most popular set of coordinates to
describe the motion of the atoms near the equilibrium geometry.
At least two very interesting quantum codes (Multimode23-25

and Conviv26-28) using such a rectilinear description have been
developed to study moderately excited rovibrational spectra of
molecular systems. Such methods are based on a preliminary
variational self-consistent field (VSCF)23,25or vibrational mul-
ticonfigurational self-consistent field (VMCSCF)26 treatment of
the working basis set in order to reduce its dimension thereby
allowing the study of large systems. Calculations with rectilinear
coordinates can be extremely hard to converge for highly excited
states. In such a case, a curvilinear description has to be adopted.
However, the kinetic energy operator (KEO) expression can be
intricate and it can be difficult to evaluate the results of it acting

on an efficient basis set. One elegant and efficient way consists
of performing a Taylor series development of the G matrix
element of the KEO. Such an approach has been intensively
applied by Sibert and co-workers in canonical Van Vleck
perturbation theory (CVPT).29-34 Recently, it has also been used
by Pouchan and co-workers35-37 to calculate low-excited
vibrational spectrum of large isolated or solvated molecules.
For large amplitude motions, such a development might be less
efficient; in such a case, the exact KEO has to be used.
Luckhaus38 has shown that such complex KEOs can be
evaluated exactly using the discrete variable representation
(DVR).17,18Finally, an underlying pseudo-spectral scheme can
help to apply such an intricate operator on a vector of the
working basis set.

We believe that the numerical methods used to calculate
rovibrational spectra should provide not only the eigenvalues
but also the eigenstates or, at least, their main projections on
some given states. This point is crucial if quantum simulations
are to help with the assignment of experimental spectra.
Unfortunately, the dimension of the direct-product basis set
dramatically increases both as the number of atoms increases
and as the energy of the states to be calculated increases. For
this reason, many numerical methods try to decrease the
dimension of the working basis set in which the rovibrational
Hamiltonian is diagonalized. A VSCF23,25 or VMCSCF26

treatment helps this decrease by defining a more adapted basis
set. The CVPT method29 applies an efficient perturbative
treatment to drastically decrease the dimension of the basis set
in which the Hamiltonian is diagonalized. This method will be
described in section IV. Pouchan and co-workers35-37 select an
adapted active space in which the Hamiltonian is diagonalized
to provide fundamental and low-excited combination bands for
large systems. This approach also combines a variational
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approach with a perturbative treatment. A great number of purely
variational methods have been developed that use sophisticated
methods to extract highly excited states from a huge primitive
basis set. In such a case, a popular method is the Lanczos
algorithm.39 As the convergence of the Lanczos scheme becomes
very slow for the denser part of the spectrum, that is, at higher
energies, spectral Lanczos algorithms40 can greatly improve the
convergence. This consists of using, in the Lanczos recursions,
another operator f(H) whose spectrum is strongly dilated around
some reference energy. Such an approach is efficient41-43 but
is CPU time-consuming because computing f(H) is in general
very expensive if the state density increases. Recently, Huang
and Carrington proposed the PIST44 (preconditioned inexact
spectral transform) method that uses an iterative linear solver
to compute approximate Lanczos vectors; the resulting Hamil-
tonian matrix is diagonalized in this basis set. This approach
has been combined with several preconditioners.45,46 These
preconditioners include a phase space optimization DVR, an
optimal separation basis, and Wyatt preconditioning. Bian and
Poirier46 established the great accuracy and efficiency of this
very sophisticated approach by computing highly excited
vibrational bands of HOCl. Lee and Light proposed an interest-
ing algorithm that uses an energy selected basis set combined
with an iterative solution to calculate the eigenvalues and
eigenvectors of highly excited triatomics47 and tetra-atomics.48

Several groups have also established the great utility of methods
based on the Davidson algorithm49 to extract eigenvalues and
eigenvectors from a huge basis set.50-55 One of these approaches
is discussed in section III.

In this paper, we will compare two methods: they are the
perturbative CVPT29 method and the Jacobi-Wilson (JW)52-55

variational approach. In the first method, eigenvalues are
obtained via the Van Vleck perturbation theory which is used
to transform away all off-diagonal coupling except those
between degenerate states. This perturbative transformation leads
to a matrix representation where eigenvalues are obtained with
relatively small matrices. Such an approach has been success-
fully applied to compute vibrational spectra of a large variety
of molecules, H2CO,29 CF4,31 CH3OH,32 and CX3H (X ) Br,
F)33,34to cite a few examples. In the second method, variational
eigenvalues and eigenvectors are obtained by combining the
JW approach with the block-Davidson scheme.52-55 The key
ingredient is a prediagonalized scheme applied to a subspace
of curvilinear normal-mode basis functions. These two strategies
are totally different, and for this reason, it is interesting to
compare the results obtained by them. Moreover, the origins of
the inaccuracies of these two methods are expected to be
different, so these two methods can be complementary.

These two methods are applied to HFCO, a good candidate
for testing the efficiency of the two methods for at least two
reasons. First, this system is of interest because the energy flow
is found to be strongly state specific when the out-of-plane mode
is highly excited. In their stimulated emission pumping experi-
ments of the unimolecular dissociation of HFCO into HF+
CO, Choi and Moore1-3 were able to assign (0,n2, 0, 0, 0,n6,
J, Ka, Kc) levels for n6 ) 14, 16, 18, and 20 well above the
dissociation threshold. Moore and co-workers suggest that IVR
in this system cannot be explained by statistical theories: they
consider that the energy flow through this molecule from the
initially excited out-of-plane mode is highly selective. Sophis-
ticated quantum numerical simulations are required to explain
why the CdO stretching mode (ν2) and the C-H out-of-plane
mode (ν6) seem to be decoupled from the other modes when
the excitation energy in the out-of-plane mode is large. To

investigate the nature of the energy flow in HFCO,56,57a global
PES has been calculated by Kato and co-workers58 to describe
both geometries near equilibrium and the dissociation path of
this molecule HFCOf HF + CO. They built a global analytical
PES for the ground state using about 4000 ab initio points
computed at the RHF/MP2 level. The form of this PES is not
adapted to the CVPT method. We therefore fit the PES in a
polynomial form. The error generated by this fit is estimated
and discussed. This point is germane because any analytical
PES is fitted: this step always introduces some error which is
not usually quantified. Consequently, this molecule is a good
candidate to test different methods for calculating either
combination modes|V1, ...,V6〉 or highly excited overtones|nνi〉.

The outline of this article is as follows. In section II, we
present the HFCO system and the two sets of coordinates used
to describe its internal deformation. These two sets of coordi-
nates are identical for in-plane geometries, but differ for out-
of-plane geometries. In section III, the variational JW method
coupled to an efficient Davidson scheme is reviewed and applied
to HFCO. In section IV, CVPT is applied to HFCO. Section V
is devoted to the analysis of the error generated by the two
polynomial fits of the PES. The spectra obtained with both the
CVPT method and the JW variational approach are compared
in section VI. The sensitivity of the results to coordinate choice
is also discussed. Section VII concludes and gives some
perspectives.

II. Choice of Coordinates

Since the choice of coordinates can strongly influence the
convergence of both variational59 and perturbative calculations,30

in this study, we will obtain results for two sets of coordinates.
A comparison of the results will allow us to evaluate the
influence of the choice of coordinates on the efficiency of the
methods. In general, it is desirable to develop methods for
solving the nuclear Schro¨dinger equation that are not overly
dependent on the choice of the set of coordinates. One wants
to develop methods that are flexible enough that they will work
for an entire family of coordinates in order to describe a large
variety of systems in an optimal way. Although the two sets of
coordinates used in this study differ only for out-of-plane
geometries, this difference leads to notable differences in the
couplings between the coordinates.

The first set of coordinates is the polyspherical set60 generated
by the three vectorsRB3 ) COB, RB2 ) CFB, andRB1 ) CHB. In this
parametrization, which has recently been reviewed,61,62 the
system is described by the spherical coordinates (Ri, ϑi, æi) of
the three vectors RBi (i ) 1, 2, 3) in a coordinate system with
the C atom at the origin, the O atom on the positivez-axis, and
the F atom lying in thexz-plane withx > 0. It results in the
following internal coordinates: three radial coordinates (RCO,
RCF, RCH), two in-plane coordinates (ϑ1 ) ∠HCO,ϑ2 ) ∠FCO),
and one dihedral coordinateφ ) æ1. We also denote the first
set as theφ set, to distinguish it from the second set, theδ set,
previously used by Burleigh et al. to study H2CO.30 Here, the
C atom is at the origin, but the O atom lies on the positive
x-axis. The vectorsCFB and CHB are parametrized by their
spherical coordinates (RCF, RCF, âCF; RCH, RCH, âCH) measured
in a coordinate system such thatRCF ) RCH ) δ. The δ set
consists of three radial coordinates (RCO, RCF, RCH) and three
angular coordinates (âCH, âCF, δ). The in-plane coordinates are
similar in these two parametrizations for planar geometries,
while the out-of-plane coordinates (φ andδ) are different. For
instance,φ is set toπ while δ is equal toπ/2 for the planar
equilibrium geometry.
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We use the global PES developed by Kato and co-workers.58

The normal-mode frequencies obtained with this PES are
provided in Table 1. These frequencies will aid in the prediction
of the kinds of resonances that can occur for this molecule.

III. Variational Jacobi -Wilson Method Coupled with a
Davidson Scheme

The recently developed JW method has been applied to
HFCO.54 As the full details of this method are given by
Leforestier et al.,63 we will only outline the key points here.
Starting from a description with a set of six polyspherical
coordinates,61,62 denoted{qn, n ) 1, ..., 6} corresponding to a
Jacobi vector parametrization of the system,54,55 a set of
curVilinear normal coordinates, denoted{QR, R ) 1, ..., 6}, is
introduced to calculate the excitation vibrational spectrum. These
curVilinear normal coordinates are provided by the FG method
of Wilson,64 that is

This method combines the simplicity60,65,66of the exact KEO
expressed in terms of polyspherical coordinates with the
efficiency of the Wilson normal-mode approach.

Our corresponding basis functions are eigenfunctions of six
uncoupled harmonic oscillators describing the curvilinear normal
coordinates. This normal-mode basis can be refined further by
including the diagonal anharmonicities.63 Specifically, the
molecular basis setB is thus spanned by the product functions
|V1, ..., V6〉o whereVi corresponds to the occupation number of
the anharmonic oscillator describing the normal-modeQi. This
basisB is restricted by an energy cutoff

One can also impose some constraints (nR e NR) on the
maximum occupation number of each mode. To selectively
study one state or a series of coupled states, one can define a
more specific basis set. For instance, highly excited overtones
of the out-of-plane|nν6〉 (n e 10) have been recently calculated55

by adding a second energy criterion limiting the energy in the
in-plane modes. This allows us to use a more adapted working
basis set.

A pertinent feature of the method is the presence of an
underlying pseudo-spectral scheme, allowing very large mo-
lecular basis sets to be used by means ofdirect iterative methods.
That is, one defines a 6D grid,G, subject to an energy cutoff:
Q1a × ... × Q6f ∈ G if Va...f e EG. By using a grid cutoff larger
than the basis cutoff,EG ) ηEmax

0(|V1, ...,V6〉) (η > 1), one can
enforce dealiasing.67 For the calculations presented below, we
have used anη value of 1.2. The presence of this pseudo-spectral
scheme allows one to use any kind of PES expression. This
constitutes an central advantage of this method. However, the

use of this underlying pseudo-spectral scheme increases the CPU
time and the memory required.

An efficient Davidson49 scheme is employed to calculate the
eigenvectors and eigenvalues of the system.52-55 The accuracy
of this method is controlled during the iterative Davidson process
by evaluating the residual||(H - EM)ΨM|| where (EM, ΨM)
denote the estimated energy and eigenvector obtained afterM
Davidson iterations, respectively. We have established else-
where54,55 that the residual is a measure of the quality of the
eigenvector and eigenenergy obtained, even for highly excited
overtones.55 To obtain accurate results, eigenvectors and
eigenenergies are considered as converged when their residual
is smaller or equal than 1 cm-1. It results in an accuracy better
than about 0.1 cm-1 for energies smaller than 8000 cm-1.
Consequently, the unique origin of the inaccuracy of this
variational method comes from the finite dimension of the
working basis set.

The calculation of states|V1, ...,V6〉 such thatVi e 3 has been
obtained in a basis set containing all the zero-order states,|V1,
..., V6〉0, whose zero-order excitation energy was smaller than
Emax

0(|V1, ...,V6〉) ) 28 000 cm-1 while the quantum numberVi

was smaller or equal to 10. It results in a working basis
containing about 100 000 states and the use of a grid of about
1.8 × 106 points. For combination states|V1, ..., V6〉 with one
quantum number equal to four and for overtones states|nνi〉, a
specific basis set has been built to improve the accuracy of the
variational calculation. For instance, in calculating the out-of-
plane |nν6〉, a third parameter has been introduced: the
maximum allowed excitation energy in the in-plane modes
(Emax

0(|V1, ...,V5〉)), in order to allow a larger energy in the out-
of plane mode. These overtones states,|nν6〉, have been obtained
in a basis set such thatEmax

0(|V1, ..., V6〉) andEmax
0(|V1, ..., V5〉)

were set to 35 500 and 25 500 cm-1, respectively, while the
in-plane quantum numbersVi (i ) 1, ..., 5) were smaller or equal
to 8. It results in a 150 000 state basis set adapted to compute
states with large excitation in mode 6. Consequently, the JW
method coupled to a Davidson scheme has been used to calculate
all the overtones states|nνi〉 associated with energies smaller
than 8000 cm-1 and all the combination states|V1, ..., V6〉
associated with energies smaller than 7000 cm-1 and such that
Vi e 4. For these states, we can consider that the error of the
variational energies near 3000 and 7000 cm-1 is smaller than
0.1 cm-1 and about 3 cm-1, respectively. The comparison with
the perturbative calculation is limited to these states, that is,
combination states withVi e 4 and overtones states, because
we are able to estimate the accuracy of the energies provided
by this variational method. This is important because these
variational energies will be compared to perturbative energies
provided by CVPT.

IV. CVPT Perturbative Theory

The application of Van Vleck perturbation theory to the
HFCO presents three challenges. First, the molecule dissociates
at relatively low energy, and one expects the perturbation theory
to fail as one approaches this energy. Second, in contrast to
our recent work on SCCl2,68 the normal-mode frequencies, given
in Table 1, are such that there is no easily identifiable polyad
structure. This structure is essential if one is to construct a block-
diagonal Hamiltonian and thereby reduce the dimensionality of
the Hamiltonian. Nonetheless, perturbation theory can be used
to “precondition” the Hamiltonian so that the Hamiltonian matrix
can be diagonalized using a relatively small basis set. Third,
the potential needs to be reexpressed as a Taylor series
expansion in the normal coordinates in order to implement the
Van Vleck transformations.

TABLE 1: Experimental Fundamental Frequencies1 of
HFCO Expressed in cm-1

mode frequency (cm-1) symmetry description

1 2981 A′ CH stretch
2 1837 A′ CO stretch
3 1347 A′ HCO bend
4 1065 A′ CF stretch
5 662 A′ FCO bend
6 1011 A′′ out-of-plane bend

QR ) ∑
n)1

6

LRn
-1qn (1)

If EV1...V6

0 e Emax
0(|V1, ...,V6〉)

|V1, ...,V6〉
0 ∈ B (2)
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In this approach, we also use curvilinear normal coordinates
(cf. eq 1). Here, the Hamiltonian, with volume element
dQ1dQ2‚‚‚, takes the simple form

where the components ofP arePk ) -ip∂/∂Qk, the momentum
conjugate toQk. TheG-matrix elements andV′(Q) are expanded
in a Taylor series about the equilibrium configuration through
sixth and fourth order, respectively, using standard analytical
expressions for these terms.69 The Hamiltonian is expanded as

whereλ is the perturbation parameter. The potential and kinetic
terms of the orderk + 2 are included inH(k), and theV′(Q)
terms of the orderk are included inH(k). This Hamiltonian is
subsequently expressed in terms of harmonic oscillator raising
and lowering operators.

The Van Vleck transformations are accomplished via a
succession of unitary transformations

applied to the original Hamiltonian to give

where theS(k) are chosen such thatK has the desired form.
Normally, one attempts to transform to aK such that, when
written as a matrix, it is block-diagonal. Given the low symmetry
and distribution of normal-mode frequencies, this approach was
not successful. In a recent study of CHF3, Ramesh et al.33

defined several polyad numbers and then retained all coupling
terms that conserve any one of the polyad numbers. Here, we
pursue a closely related approach; we transformK so that it
only includes diagonal contributions and a select set of resonance
interactions. Equivalently, the perturbative results are obtained
by transforming away all nonresonance terms in the Hamilto-
nian. Specifically, a resonance term is defined as any term that
couples two states whose absolute difference in zero-order
energies

is less than or equal to an energy cutoffEcut(k) wherek is the
order of the coupling terms. Hereωi are the harmonic frequen-
cies. The cutoff values we have used are 350, 105, 60, 50, and
15 cm-1 respectively fork ) 3-7. These cutoff values lead to
35 resonance terms in the transformed Hamiltonian. Table 2

includes a list of the resonances that arise at third and fourth
order in the coupling. The first resonance of Table 2 describes
the ω1 ≈ ω2 + ω4 resonance condition. Consequently, terms
of the form a1a2

† a4
† (as well as their higher order analogues

such as a1a1a2
† a2

† a4
† a4

†) are included in the transformed
HamiltonianK.

The Kato potential is not in a form that is amenable to CVPT.
More generally, a factorized form of the Hamiltonian (i.e.,H
) ∑i)1

Nterm ∏j)1
Nmode fij(Qj)) is required by many efficient numerical

methods such as CVPT,70 multiconfiguration time dependent
Hartree (MCTDH),71 and VMSCF schemes.26 Such expressions
significantly reduce the core memory required and allow one
to study larger and more excited systems. However, a global
PES which is not given in a factorized form has to be fitted to
be used by these methods. Here, it must be reexpressed as a
polynomial expansion in the normal coordinates. In principle,
this is straightforward, however in practice it presents several
numerical challenges. One needs high-order polynomial expan-
sions to have a faithful representation of the potential up to
8000 cm-1 above the zero-point energy.

A standard way to improve the convergence of the expansion
is to carry out the expansions in internal coordinates using
Simons-Parr-Finlan coordinatesFi ) reiri/(ri + rei) to describe
the stretches. Here,ri andrei are the stretch extension coordinate
and equilibrium bond length, respectively. Even with this
coordinate choice, to achieve the necessary accuracy, our

TABLE 2: List of Resonances that Are Included in the
Perturbative Hamiltonian K

∆n1 ∆n2 ∆n3 ∆n4 ∆n4 ∆n6

-1 1 0 1 0 0
1 -1 -1 0 0 0
0 0 1 0 1 -2
0 0 1 -2 1 0
0 0 0 -2 0 2
0 -1 1 1 -1 0
1 0 -1 -1 -1 0
1 0 0 -1 0 -2
1 -1 0 0 -2 0
1 0 0 -3 0 0

-1 2 0 0 -1 0

Figure 1. Select 2D equipotential contour plots in (a)δ set and (b)φ
set of coordinates. The coordinates{r4, r5, r6} are extension coordinates
corresponding to{âCH, âCF, δ} for the δ set and{ϑ1, ϑ2, φ} for theφ

set, respectively. The fit to the Kato potential is shown on the left; the
difference between the potential and the corresponding polynomial fit
is plotted on the right. On left-hand side, the contour lines are placed
at 4000, 8000, ..., 20 000 cm-1, and on the right-hand side, they are
placed at-200, -100, 100, and 200 cm-1.

H ) 1
2

PTGP + V′(Q) + V(Q) (3)

H ) ∑
k)0

N

λkH(k) (4)

Tk ) exp{iλk[S(k), ]} (5)

K ) TN‚‚‚T2T1H (6)

|Ev
0 - Ev′

0| ) |∑
i

∆Viωi| (7)
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potential expansions include select terms up to tenth order for
both theφ andδ sets of coordinates.

In an attempt to determine the Taylor series expansion
coefficients, we found that we could only reliably calculate up
to sixth-order derivatives. Above this order, numerical instabili-
ties lead to fluctuations in the values of the derivatives obtained
via finite differentiation, regardless of the number of points used.
The higher order contributions to the potential were determined
via least-squares fitting of∆V, where ∆V is the difference
between the full potential and our sixth-order expansion of it.
The Taylor series expansion of the potential includes up to four-
body terms. The least-squares fit expansion includes only one-
body terms.

Figure 1 shows equipotential energy contours for our fit
potentials for the (a)δ set and (b)φ set. Also shown are the
differences between the fit potential and the Kato potential. The
results for the plots with respect to other coordinates show
qualitatively similar agreement. The plots clearly show that the
two-body contribution to the fit potential is in excellent
agreement with the Kato potential for energies up to at least
12 000 cm-1. Results for theφ andδ sets, although different,
do not appear to differ in the extent of the potential coupling.
Further tests of the agreement will come from comparison of
variational results obtained for the Kato surface and the fits to
this surface which are described in the following section.

To obtain eigenvalues associated with the potentials just
described, we carry out the perturbative transformations and
then diagonalize the Hamiltonian in an appropriate basis set
B. Our Hamiltonian allows for most of the plausible resonance
interactions and is, therefore, not block-diagonal. As in the
variational calculation,B is restricted by the energy cutoff
described by eq 2. We check for convergence by increasing
the energyEmax

0 and observing how the eigenvalues change.

The significant feature to note in Figure 2 is that asEmax
0 is

increased in increments of 500 cm-1, the energy to which the
eigenvalues are converged increases by almost 500 cm-1. This
is an ideal situation for any variational calculation; it is the result
of a basis set where the only couplings are those between nearly
degenerate states. Similar convergence was found by Ramesh
et al. for CHF3.33

Having verified the convergence of the variational part of
the calculation, we can now test the convergence with respect
to the order of the perturbation theory. In Figure 3, we plot the
difference between eighth- and sixth-order results as a function
of excitation energies. One can see that the convergence is good
up to 7000 cm-1 of excitation for both theδ set of coordinates
and the polyspherical coordinates, with the convergence being
slightly better for the former. Focusing on just the overtone states
shown in Figure 4, we see that at slightly higher energies the
discrepancy between the coordinates is greater with the poly-
spherical results havingE(eighth order)- E(sixth order) values
almost as large as 90 cm-1 for the overtone of the out-of-plane
bend.

V. Effect of the PES Fit on the Accuracy of the Spectrum

In this section, we further examine the quality of our fits of
the Kato potential.58 It is essential to quantify the accuracy of
a fit. An easy way to do this is to plot the differences between
the two surfaces. Such an analysis is not so trivial when the
number of degrees of freedom increases. One can readily
compare 2D slices as we have done in Figure 1. It is, however,

Figure 2. Plots of the energy difference∆E(Emax
0) vs the corresponding

eigenvaluesE, for the eighth-order perturbative results using theδ set
of coordinates. Here,∆E(Emax

0) is the difference between an eigenvalue
obtained with the basis defined byEmax

0, the maximum harmonic energy
allowed for a basis function in cm-1 and a converged eigenvalue. The
value of Emax

0 is 7500, 8500, and 9500 cm-1 in (a), (b), and (c),
respectively. The variationally converged numbers are obtained with
Emax

0 ) 10 500 cm-1. This latter basis set consists of a modest number
of 1454 basis functions.

Figure 3. Difference between eighth- and sixth-order perturbative
energies,E(eighth order)- E(sixth order) plotted as a function of
E(eighth order) with energies expressed in cm-1 when the PES is fit
with (a) theδ set and (b) theφ set of coordinates. Here,V6 denotes the
quantum number of mode 6, that is, the out-of-plane mode.
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not easy from the comparison to estimate the consequence of
small differences on excitation energies and on the eigenstates.
For this reason, we will estimate the error generated by the
polynomial fit by comparing eigenvalues and eigenvectors for
the surfaces.

The excitation vibrational spectrum has been computed with
the JW method described in section III with three different
PESs: the original global one developed by Kato58 which
constitutes in this study the reference PES and the fitted
expressions of this reference PES by using either the poly-
spherical set (theφ set) or theδ set of coordinates.

Figure 5 represents the error in the energies of A′ states|V1,
..., V6〉 such thatVi e 4 generated by the fit using either theφ

set or δ set of coordinates; Figure 6 provides the same
information for the A′ overtones states|nνi〉 up to 8000 cm-1.
First, it is remarkable that these rather simple fits provide
accurate energies for states with small excitation in the out-of-
plane mode and even for highly excited overtones of the in-
plane modes. The only significant errors are observed for states
with large excitation in the out-of-plane modes.

Focusing specifically on these states, we compare expressions
of the eigenstates associated with the fifth and seventh out-of-
plane overtones. In Table 3, we compare expansion coefficients
cV1,...,V6 for select wave functions describing the out-of-plane
bending motion.

Table 3 provides the main projections of these eigenstates onto
the working basis set. This table demonstrates that the descrip-
tion of the overtone states is similar for all three PESs used.
This result is crucial; it shows that our fitted PES, which
provides energies with errors larger than the average level
spacing, provides a reasonably correct description of the
eigenstates. That means, for instance, that the dynamical
behavior, that is, the vibrational energy flow through the
molecule, should be very similar whatever the PES used up to
8000 cm-1 of excitation energy.

VI. Comparison of CVPT Perturbative and JW
Variational Results

The excitation spectrum obtained after a sixth- or eighth-
order perturbative treatment is now compared to the spectrum
obtained with the variational JW method. This comparison
allows us to quantify the accuracy of the spectrum obtained
with CVPT. One has to remember that the error of the
variational calculation generated by the finite dimension of the
basis set can be estimated to 0.1 cm-1 for energies near 3000
cm-1 and less than about 3 cm-1 near 8000 cm-1. It should be
possible to improve this accuracy by performing a specific
calculation in an ideally adapted basis for the 300 states
calculated in this study. However, such an accuracy is sufficient
because the inherent error of the PES for highly excited energies
is larger than this quantity.

We first focus on the spectrum obtained with the PES fitted
with theδ-set of coordinates. Figure 7 compares the variational
energies of combination states (|V1, ..., V6〉 with Vi e 4) with

Figure 4. Difference between eighth- and sixth-order perturbative
energies,E(eighth order)- E(sixth order) plotted as a function of the
corresponding excitation energy (in cm-1) of overtones states with
excitation energies less than 8000 cm-1 when the PES is fit with (a)
theδ set and (b) theφ set of coordinates. Only states of A′ symmetry
are included.

|nν6〉 ) ∑
V1,...,V6

cV1,..,V6
|V1, ...,V6〉

o (8)

Figure 5. Energy difference (EoriginalPES- EfittedPES) expressed in cm-1.
The top and bottom panels use the fits obtained with theφ andδ sets
of the coordinates. The energies are provided by the JW variational
method, and only states|V1, ..., V6〉 such thatVi e 4 are included in the
comparison.
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the perturbative energies obtained with a sixth- and eighth-order
perturbative treatment, respectively. These results demonstrate
that the CVPT convergence is excellent. The quality of the
spectrum obtained is very good even after the sixth-order
perturbative treatment. The main disagreement between the sixth
and eighth orders is obtained for states with large excitation in
the out-of-plane mode. When the energy obtained by CVPT is
slightly smaller than the variational energy, one can think that

the CVPT value is more accurate because a variational calcula-
tion in a larger basis should provide slightly smaller energies.
It is not a rule but is usually observed when the state is not too
strongly coupled to another via an anharmonic resonance. When
the CVPT energy is slightly larger than the variational energy,
one can assume that the variational value is more accurate. This
latter case does not occur often (few points correspond to this
case). Consequently, the accuracy of the energies provided by
CVPT is impressive. One can also notice that the differences
between the variational and perturbative energies are not
significant: this error is smaller than the error generated by the
inherent inaccuracy of a PES.

Figure 8 focuses on overtones states up to 8000 cm-1. This
figure reveals that the in-plane overtones are very accurately
obtained after sixth-order treatment and show slow convergence
of highly excited out-of-place overtones. This is consistent with
Figure 2 which shows that the convergence of the perturbative
treatment is slow for states with large excitation in the out-of-
plane mode. However, the result obtained after an eighth-order
perturbative treatment is satisfactory.

One can now focus on the spectrum obtained with the fit
performed with the polyspherical coordinates (cf. Figures 9 and
10). CVPT converges more slowly with thisφ set of coordinates.
It is not trivial to predict why theδ set of coordinates seems to
be more adapted to describe this system. One possible reason
is that the singularities inherent in using normal coordinates
occur at lower energies for theφ set than theδ set. Specifically,
the out-of-planeφ coordinate is ill-defined ifCOB × CHB ) 0 or
COB × CFB ) 0, while theδ set is defined even when the atoms
are collinear. In either coordinate set, however, an eighth-order

Figure 6. Energy difference (EoriginalPES- EfittedPES) expressed in cm-1

for A′ overtone states|nνi〉. The top and bottom panels use the fits
obtained with theδ and φ sets of the coordinates, respectively. The
energies are provided by the JW variational method.

TABLE 3: Absolute Value of the Coefficient cW1,...,W6 Larger
than 0.15 for the Overtones|6ν6〉 and |8ν6〉 Expressed in the
Zero-Order Working Basis Set of Eq 8a

state original PES δ fit polyspherical fit

6ν6 E ) 6018.4 E ) 6008.4 E ) 5991.24
0.17|64〉0 0.17|64〉0 0.17|64〉0

0.77|66〉0 0.77|66〉0 0.77|66〉0

0.14|4168〉0 0.16|4168〉0 0.15|4168〉0

0.22|3166〉0 0.23|3166〉0 0.23|3166〉0

0.18|2164〉0 0.19|2164〉0 0.20|2164〉0

0.28|1164〉0 0.28|1164〉0 0.27|1164〉0

0.15|1166〉0 0.15|1166〉0 0.15|1166〉0

8ν6 E ) 7984.9 E ) 7958.65 E ) 7917.52
0.25|66〉0 0.24|66〉0 0.25|66〉0

0.64|68〉0 0.64|68〉0 0.63|68〉0

0.17|4168〉0 0.16|4168〉0 0.16|4168〉0

0.24|3168〉0 0.25|3168〉0 0.25|3168〉0

0.20|2166〉0 0.22|2166〉0 0.26|2166〉0

0.30|1166〉0 0.29|1166〉0 0.28|1166〉0

0.15|1168〉0 0.15|1168〉0 0.15|1168〉0

a Absolute values are given since the signs cannot be compared. Here,
we use the notation, for example,|4168〉0 to represent the state|0, 0, 0,
1, 0, 8〉0.

Figure 7. Energy difference (ECVPT - Evariational) expressed in cm-1

for |V1, ..., V6〉 such thatVi e 4 when the PES is fit with theδ set of
coordinates. The states are labeled by the sumVmax ) ∑i Vi: (a) CVPT
results at sixth order and (b) CVPT results at eighth order.
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treatment provides an excellent spectrum when the out-of-plane
mode is not too excited.

In summary, the above comparisons demonstrate the great
accuracy of the CVPT approach up to 8000 cm-1. CVPT results
are least accurate for states with a large excitation in the out-
of-plane mode. For these states, the convergence is slower with
the polyspherical set of coordinates. This point is consistent with
Figure 4 which reveals that the convergence of the perturbative
treatment is slower for states with large excitation in mode 6.

VII. Conclusion and Perspectives

This study has quantified the accuracy of eigenvalues obtained
via the perturbative CVPT method by comparing them to those
obtained with the variational JW method. The results demon-
strate the great accuracy of CVPT for calculating both combina-
tion states and overtones states up to 8000 cm-1. CVPT is almost
always faster than a variational method and as accurate for a
moderately excited part of the spectrum. A notable caveat is
that one must compare successively higher orders of the
perturbation theory and test for convergence. It is important to
mention that the labels of the states studied are nearly identical
for the two methods even while strong anharmonic resonances
couple multiple zero-order states. This point is not trivial because
the space in which the Hamiltonian is diagonalized is different
in these two methods.

HFCO was chosen for this study because this molecule is, a
priori, not ideally suited to treatment by CVPT. First, it is not
possible to define a quantum numberN ) ∑i)1

6 ciVi to define

polyads of states; second, there is a relatively low dissociation
energy. Nonetheless, the agreement found here is similar to the
results obtained by Ribeiro72 in a preliminary study devoted to
H2CO and using the PES fitted by Sibert and co-workers with
CVPT.30 In that study, it was demonstrated that the energies
provided by the JW method always converge to the CVPT value
up to 9500 cm-1. However, H2CO is a rather simple system to
treat by CVPT because polyads of states are easy to define and
dissociation occurs at higher energies. Consequently, the HFCO
system studied here provides a more rigorous test of the method
than earlier studied systems where comparisons were made to
variational results.

This study examined the error that is introduced when
working with a PES that has been fit to a polynomial form;
this being a requirement of CVPT. To quantify this error, we
compared variational results from the JW method for a global
surface and fits to this surface. We found that the error generated
by the polynomial fit is very limited and smaller than the
inherent inaccuracy of a PES for all the states moderately excited
in the out-of-plane mode. The out-of-plane mode should require
more attention and a more sophisticated fit. We also noted that
the basis set expansion coefficients of the eigenstates describing
the highly excited out-of-plane overtones are not very sensitive
to the accuracy of the fit. This point is important and reveals
that the fitted expressions correctly represent the main intermode
couplings for this system. This trend has also been observed in
a recent study using the MCTDH method,73,74 a method that
also requires a fit to the PES in order to provide the time
evolution of wave packets. It has been shown recently that the
energy flow through the system is not very sensitive to the

Figure 8. Energy difference (ECVPT - Evariational) expressed in cm-1

for the overtones states|nνi〉 up to 8000 cm-1 when the PES is fit with
the δ set of coordinates. The states are labeled by the sumVmax ) ∑i

Vi: (a) CVPT results at sixth order and (b) CVPT results at eighth
order.

Figure 9. Energy difference (ECVPT - Evariational) expressed in cm-1

for |V1, ..., V6〉 such thatVi e 4 when the PES is fit with theφ set of
coordinates: (a) CVPT results at sixth order and (b) CVPT results at
eighth order.
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accuracy of the fit.75 In addition to examining the error
introduced by using a polynomial fit to the potential, we
quantified the influence of the choice of the set of coordinates
used to describe the system: this role is not decisive but is not
negligible. In our case, the results obtained with CVPT when
theδ coordinates are used are more accurate and easier to obtain
than when the polyspherical coordinates are adopted. This trend
is not trivial to predict. However, the eighth-order CVPT results
are very satisfactory and similar whatever set of coordinates is
used.

It is important to mention that these two methods (JW and
CVPT) are general and can be applied to any semirigid system.
The JW method limitation comes from the dimension of the
working basis set. A preliminary SCF27,76,77 or MCSCF26

treatment should decrease the dimension of the working basis
set and allows us to treat larger systems. The CVPT method
limitation comes from the necessity of not being able to remove
couplings between nearly degenerate states. The resulting
Hamiltonian may be too large to diagonalize with traditional
methods. In future work, we plan to use the Davidson scheme
to diagonalize such Hamiltonians, thus allowing us to extend
the perturbative approach to study highly excited states of larger
molecules.
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(27) Cassam-Chenaı¨, P.; Liévin, J. Int. J. Quantum Chem.2003, 93,

245.
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